If it's not what You are looking for type in the equation solver your own equation and let us solve it.
490=50t+4.9t^2
We move all terms to the left:
490-(50t+4.9t^2)=0
We get rid of parentheses
-4.9t^2-50t+490=0
a = -4.9; b = -50; c = +490;
Δ = b2-4ac
Δ = -502-4·(-4.9)·490
Δ = 12104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12104}=\sqrt{4*3026}=\sqrt{4}*\sqrt{3026}=2\sqrt{3026}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{3026}}{2*-4.9}=\frac{50-2\sqrt{3026}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{3026}}{2*-4.9}=\frac{50+2\sqrt{3026}}{-9.8} $
| 6(x-3)-7=-4(-5x+4)-2x | | n+5(6)=54 | | –9h−10=10+10−3h | | 2q-10/4=3q | | -7+5z=6z | | 3(2x-4)=4x-8 | | (6y+3)+(4y-13)=90 | | 5x+4(x-3)+6=-2(x-1)-13 | | 5-y=5;3 | | 3m/7=160/63 | | r+86=94 | | 12y-6y+5=-1 | | 2x+3-3=3x+8-3 | | 10x+14=604 | | 6(x-3)-7=-4) | | Y=300+60x | | x−3−2=9.5 | | -10-3(2x-1)=-8 | | 0.8888(54x-36)+2=-0.75(-40+16x)+90x | | 5v-10=v+10 | | 3/4=x/24=24/Y | | x+35=-81 | | x-3+2x-19=23 | | 4x–9=7x+12 | | 5x-15=x+6 | | 10.8=y-3.2 | | 8z+20=-3z-20 | | -7x-10-15x=+83 | | -4(2x-4)=2x+36 | | -4q=8-5q | | -20-6k=20-8k | | 10-15n=5(3n+2) |